Semantic segmentation
- U-Net [] [2015]
- [Keras]
- [Keras]
- [Keras]
- [Keras]
- [Keras]
- [Tensorflow]
- [Keras]
- [PyTorch]
- [Keras]
- [Keras]
- [Torch]
- [PyTorch]
- [Keras]
- [PyTorch]
- [Caffe + Matlab]
- SegNet [] [2016]
- [Caffe]
- [Caffe]
- [Keras]
- [Keras]
- [Tensorflow]
- [Torch]
- [Keras]
- [Tensorflow]
- [Keras]
- [PyTorch]
- [Chainer]
- [Keras]
- [Keras]
- DeepLab [] [2017]
- [Caffe]
- [Caffe]
- [Caffe]
- [Caffe]
- [MXNet]
- [Tensorflow]
- [TensorFlow]
- [PyTorch]
- [PyTorch]
- [Caffe]
- [Tensorflow]
- [Keras]
- [Tensorflow]
- [PyTorch]
- [PyTorch]
- [PyTorch]
- FCN [] [2016]
- [MatConvNet]
- [Caffe]
- [Tensorflow]
- [Keras]
- [Keras]
- [Keras]
- [Tensorflow]
- [Tensorflow]
- [Keras]
- [PyTorch]
- [PyTorch]
- [Chainer]
- [MxNet]
- [Tensorflow]
- [PyTorch]
- [PyTorch]
- [Tensorflow]
- [Caffe]
- [Tensorflow]
- [Tensorflow]
- [Keras]
- [Keras]
- ENet [] [2016]
- [Caffe]
- [Torch]
- [Keras]
- [Tensorflow]
- [Tensorflow]
- [PyTorch]
- LinkNet [] [2017]
- [Torch]
- [Keras]
- DenseNet [] [2018]
- [Keras]
- Tiramisu [] [2017]
- [Keras]
- [Lasagne]
- DilatedNet [] [2016]
- [Keras]
- [Caffe]
- [PyTorch]
- [PyTorch]
- PixelNet [] [2016]
- [Caffe]
- ICNet [] [2017]
- [Caffe]
- [Keras]
- [Tensorflow]
- [Tensorflow]
- ERFNet [] [?]
- [Torch]
- [PyTorch]
- RefineNet [] [2016]
- [MatConvNet]
- PSPNet [] [2017]
- [Caffe]
- [PyTorch]
- [Chainer]
- [Keras/Tensorflow]
- [Tensorflow]
- [Tensorflow]
- [Tensorflow]
- [Keras]
- [Tensorflow]
- [PyTorch]
- [PyTorch]
- DeconvNet [] [2015]
- [Caffe]
- [Caffe]
- [Tensorflow]
- FRRN [] [2016]
- [Lasagne]
- GCN [] [2017]
- [PyTorch]
- [PyTorch]
- LRR [] [2016]
- [Matconvnet]
- DUC, HDC [] [2017]
- [PyTorch]
- [PyTorch]
- MultiNet [] [2016]
- Segaware [] [2017]
- [Caffe]
- Semantic Segmentation using Adversarial Networks [] [2016]
- [Chainer]
- PixelDCN [] [2017]
- [Tensorflow]
- ShuffleSeg [] [2018]
- [TensorFlow]
- AdaptSegNet [] [2018]
- [PyTorch]
- TuSimple-DUC [] [2018]
- [MxNet]
- FPN [] [2017]
- [Keras]
- R2U-Net [] [2018]
- [PyTorch]
- Attention U-Net [] [2018]
- [PyTorch]
- [PyTorch]
- DANet [] [2018]
- [PyTorch]
- ShelfNet [] [2018]
- [PyTorch]
- LadderNet [] [2018]
- [PyTorch]
- BiSeNet [] [2018]
- [PyTorch]
- [PyTorch]
- ESPNet [] [2018]
- [PyTorch]
- DFN [] [2018]
- [PyTorch]
- CCNet [] [2018]
- [PyTorch]
- DenseASPP [] [2018]
- [PyTorch]
Instance aware segmentation
- FCIS []
- [MxNet]
- MNC []
- [Caffe]
- DeepMask []
- [Torch]
- SharpMask []
- [Torch]
- Mask-RCNN []
- [Tensorflow]
- [Caffe]
- [MxNet]
- [Keras]
- [PyTorch]
- RIS []
- [Torch]
- FastMask []
- [Caffe]
- BlitzNet []
- [Tensorflow]
- PANet [] [2018]
- [Caffe]
- TernausNetV2 [] [2018]
- [PyTorch]
Weakly-supervised segmentation
- SEC []
- [Caffe]
RNN
- ReNet []
- [Lasagne]
- ReSeg []
- [PyTorch]
- [Lasagne]
- RIS []
- [Torch]
- CRF-RNN []
- [Caffe]
- [Caffe]
- [Tensorflow]
- [Tensorflow]
- [Keras]
GANS
- pix2pixHD [] [2018]
- Probalistic Unet [] [2018]
Graphical Models (CRF, MRF)
Datasets:
Benchmarks
- [PyTorch]
- [PyTorch]
- [Tensorflow]
- [Tensorflow]
- [Caffe+Matlab]
- [PyTorch]
- [PyTorch]
- [PyTorch]
- [Keras]
- [PyTorch]
Starter code
Annotation Tools:
Results:
Metrics
Losses
Other lists
Medical image segmentation:
-
DIGITS
-
U-Net: Convolutional Networks for Biomedical Image Segmentation
-
Cascaded-FCN
-
Keras
-
Tensorflow
-
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)
-
Papers:
- Sliding window approach
- Sliding window approach
-
Data:
Satellite images segmentation
- Data:
- SpaceNet[]
Video segmentation
Autonomous driving
- [Keras]
Other
Networks by framework (Older list)
-
Keras
-
TensorFlow
-
Caffe
-
torch
-
MXNet
Papers and Code (Older list)
-
Simultaneous detection and segmentation
-
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
-
Learning to Propose Objects
-
Nonparametric Scene Parsing via Label Transfer
-
Other